FEATURES:

- 5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- Outputs precharge voltage to minimize signal distortion during live insertion
- TTL-compatible input and output levels
- Available in QSOP package

DESCRIPTION:

The QS3800 is a 10-bit high-speed CMOS bus switch controlled by a single enable ($\overline{\mathrm{ON}})$ input. When $\overline{\mathrm{ON}}$ is low, the switch is on and port A is connected to port B . When $\overline{\mathrm{O}} \overline{\mathrm{N}}$ is high, the switch between port A and port B is open and portB is precharged to the bias voltage. The low ON resistance (5Ω) of the QS3800 allows inputs to be connected to outputs without adding propagation delay and without generating additional noise. The QS3800 also precharges the B port to a user-selectable bias voltage to minimize live insertion noise, which is useful in VME bus applications.

The QS3800 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VBIAS	Bias Voltage Range	-0.5 to VCC	V
VTERM $^{(3)}$	DC Input Voltage VIn	-0.5 to VCC +0.5	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
	Input Clamp Current	-50	mA
PmaX	Maximum Power Dissipation	0.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vin}=0 \mathrm{~V}, \mathrm{~V}\right.$ out $\left.=0 \mathrm{~V}\right)$

Pins	Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{9}$	I / O	Bus A
$\mathrm{B} 0-\mathrm{B} 9$	I / O	Bus B
$\overline{\mathrm{ON}}$	I	Bus Switch Enable
VBAS	I	Bias Voltage

FUNCTIONTABLE ${ }^{(1)}$

$\overline{\mathrm{O}} \overline{\mathrm{N}}$	$\mathrm{B} 0-\mathrm{B} 9$	Function
L	$\mathrm{A} 0-\mathrm{A} 9$	Connect
H	VBIAS	Disconnect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
VBIAS	Bias Voltage	$\mathrm{Vcc}=5 \mathrm{~V}$	1.3	-	Vcc	V
10	BiasCurrent	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{VBIAS}=2.4 \mathrm{~V}, \mathrm{Vo}=0, \overline{\mathrm{ON}}=\mathrm{HIGH}$	0.25	-	-	mA
IIN	InputLeakageCurrent(Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-StateCurrent(Hi-Z)	OV \leq Vout \leq Vcc	-	-	± 1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	VCC $=$ Min., VIN $=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{VCC}=\mathrm{Min} ., \mathrm{VIN}=2.4 \mathrm{~V}, \mathrm{ION}=15 \mathrm{~mA}$	-	10	15	

NOTE:

1. Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=5 \mathrm{~V}$

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max.	Unit
Icco	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f $=0$	0.2	3	$\mu \mathrm{A}$
$\triangle \mathrm{lcC}$	Power Supply Current per Input HIGH ${ }^{(3)}$	Vcc = Max., VIN = 3.4V, f =	-	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(4)}$	Vcc = Max., A and B Pins Open, Data Inputs = GND, Control Input Toggling @ 50\% Duty Cycle	-	0.25	$\mathrm{mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Typical values are at $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Per TTL-driven input ($\mathrm{V} \mathbb{I N}=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to $\Delta \mathrm{lcc}$.
4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min. ${ }^{(1)}$	Typ.	Max.	Unit
$\begin{aligned} & \text { tPL } \\ & \text { tPHL } \end{aligned}$	DataPropagationDelay ${ }^{(1,2)}$ A to B, B to A		-	0.25	-	ns
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \end{aligned}$	Switch Turn-On Delay $\overline{\mathrm{ON}}$ to A or B	$\begin{gathered} \text { VBIAS }=3 \mathrm{~V} \\ \text { VBIAS }=\text { GND } \end{gathered}$	1.5	-	7.5	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch Turn-OffDelay ${ }^{(1)}$ $\overline{\mathrm{ON}}$ to A or B	$\begin{gathered} \text { VBIAS }=3 \mathrm{~V} \\ \text { VBIAS }=\text { GND } \end{gathered}$	1.5	-	6.5	ns

NOTES:

1. This parameter is guaranteed but not production tested.
2. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns at $\mathrm{CL}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERINGINFORMATION

for SALES:
800-345-7015 or 408-284-8200 fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

